Hartree Fock

In computational physics and computational chemistry, the Hartree Fock (HF) method is an approximate method for the determination of the ground-state wavefunction and ground-state energy of a quantum many-body system. The Hartree Fock method is also called, especially in the older literature, the self-consistent field method (SCF).

The Hartree Fock method is typically used to solve the time-independent Schrodinger equation for a multi-electron atom or molecule as described in the Born-Oppenheimer approximation. Since there are no known solutions for many-electron systems (hydrogenic atoms and the diatomic hydrogen cation being notable one-electron exceptions), the problem is solved numerically. Due to the nonlinearities introduced by the Hartree Fock approximation, the equations are solved using a nonlinear method such as iteration, which gives rise to the name "self-consistent field method".